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UNBENDING SHAPES OF THIN-WALLED FLAT
TRANSLATIONAL SHELLS OF VARIABLE THICKNESS

T. M. Martynenko UDC 539.3:531.2.001:621.81

Consideration is given to the problem on selection of the thickness of a flat trandational shell in which the
prescribed external load and temperature field lead only to a zero-moment stressed-strained state (i.e., gener-
ate only membrane forces and do not change the curvature of the median surface). Within the framework of
the Kirchhoff-Love theory, this problem is reduced to solution of a nonlinear differential equation.

Shell structures (shells) are widely used as domes, ceilings, etc.; therefore, their anaysis for strength repre-
sents a topical problem in the modern mechanics of a deformed body. In view of the mathematical complexity of this
problem, one often simplifies it by making a number of assumptions (flatness of the shell, calculation and designing
of the shell for a prescribed load according to the zero-moment theory with the edge effect imposed, and others).

We use the assumptions that the median surface is described by the following equations [1-4]:
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The problem in question is in selecting the thickness of the shell h(x, y) such that the prescribed externa load
g1, U2, and g, and temperature field 6 in it produce no change in its curvature and no torsion, i.e,

X1=X2=X12=0. @
Within the framework of the Kirchhoff-Love theory, the resolving equations of this problem take the following form

[1]:
the equilibrium equations appear as
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Hooke's law with alowance for the temperature strain is
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the equations of consistency of strains appear as
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From Eq. (5) we have
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Y2 =Uu () +V(y). (6)

Then we obtain
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The functions u(x) and v(y) involved in (7) and (8) are determined from the following conditions:
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Adding these equalities termwise, we obtain
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The boundary vaues of S, y) and h(x, y) are involved in the right-hand side of (10); therefore, hS((§ g may be con-

sidered to be known. Then (1) yields
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From Egs. (4) and (5) we obtain
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whence we have
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Formulas (11)—(12) represent a system of linear differential equations with partial derivatives of first order for o
0T, 0T oT:
—1, —2, and —2 whose solvabhility conditions have the form [5-7]
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Relations (14) with account for (11)—(12) represent a system of two linear algebraic equations for T; and T» whose
solution yields
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Formulas (15) have been derived under the assumption that A # 0.
Substituting expressions (15) obtained for T and T into the third equilibrium equation (3), we find the equa-
tion sought for determination of the geometric shape of the shell:
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Expression (16) is basic in solution of inverse problems of the theory of thin-walled thermoelastic shdlls. In
solving them, part of the geometric parameters are prescribed, whereas formula (16) is used for determination of the
remaining parameters.

NOTATION

A and B, coefficients of the first quadratic form of the median surface; E, Young modulus; h(x, y), shell
thickness; g1, gz, and gz, externa load; 1/R;, /Ry, and 1/Rpy, curvatures and torsion of the median surface; Tq, Top,
and S, y), generalized stretching and tangential forces acting in normal cross sections of the shell; a coefficient of
thermoelasticity; |, Poisson coefficient; 0, temperature field.
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